

Tu caja de herramientas fundamental

Para dominar la construcción del conocimiento, necesitas dos juegos de herramientas esenciales. Cada uno cumple una función crítica en tu trabajo.

Herramienta 1: Analizar tus creaciones

Aprende a interpretar y discutir los resultados de tu propia investigación para entender qué has construido y por qué es importante.

Herramienta 2: Decodificar los planos.

Domina el lenguaje de la ciencia aprendiendo a desarmar y entender los tecnicismos que forman la base del conocimiento existente.

HERRAMIENTA 1: ANALIZANDO TUS HALLAZGOS

Has completado tu investigación y tienes los datos. ¿Y ahora qué?

La etapa final de la investigación es el **análisis de resultados**. No se trata solo de presentar datos, sino de darles vida y **significado** a través de la **interpretación** y la **discusión**.

Interpretación vs. Discusión: Dos caras del análisis.

Interpretación

¿QUÉ SIGNIFICAN TUS DATOS?

Es explicar el significado directo de los datos que encontraste.
Responde a tus preguntas de investigación o hipótesis.

Se centra en **TUS** hallazgos y en identificar patrones dentro de **TU** investigación.

Discusión

¿POR QUÉ SON IMPORTANTES TUS HALLAZGOS?

Es comparar tus resultados con otros estudios y teorías. Explica por qué pasó lo que pasó y las implicaciones más amplias.

Conecta tus hallazgos con la literatura existente, las explicaciones causales y el conocimiento general.

Las claves para una interpretación sólida.

Para interpretar correctamente, enfócate en estos cuatro puntos:

Análisis de Patrones: Identifica tendencias, comportamientos o datos que se repiten en tus resultados.

Relación con la Hipótesis: Determina si tus resultados apoyan o rechazan la hipótesis que planteaste al inicio.

Correspondencia con los Objetivos: Explica si se cumplió o no lo que te propusiste lograr con la investigación.

Coherencia con el Marco Teórico: Asegúrate de que tus resultados se relacionen con los conceptos y la teoría que investigaste.

Los elementos de una discusión profunda.

Una buena discusión va más allá de tus datos y debe incluir:

Comparación con Estudios Previos: Señala coincidencias o diferencias con lo que otros investigadores han encontrado.

Explicaciones Causales: Propón razones que expliquen el *porqué* de tus resultados.

Limitaciones del Estudio: Reconoce con honestidad qué aspectos o factores pudieron haber afectado tus resultados.

Implicaciones Prácticas o Teóricas: Explica para qué sirven tus resultados y qué aportan al conocimiento.

Sugerencias para Investigaciones Futuras: Propón qué se podría investigar a partir de tus conclusiones.

La diferencia en la práctica: Cuantitativo vs. Cualitativo.

CUANTITATIVO (Basado en números)

- Dato: "El 70% de los estudiantes presentan dificultad con la comprensión lectora."
- Interpretación: "Los datos indican un nivel bajo de comprensión lectora en la mayoría de los participantes."
- Discusión: "Este hallazgo coincide con estudios previos que muestran dificultades similares en estudiantes de secundaria..."

CUALITATIVO (Basado en descripciones)

- Dato: "Los entrevistados mencionan estrés laboral por exceso de tareas."
- Interpretación: "El exceso de responsabilidades es percibido como una carga emocional y física para el trabajador."
- Discusión: "Esto se relaciona con teorías sobre el agotamiento profesional, que señalan que altas cargas de trabajo generan estrés y desmotivación."

De construir tu análisis a decodificar el lenguaje

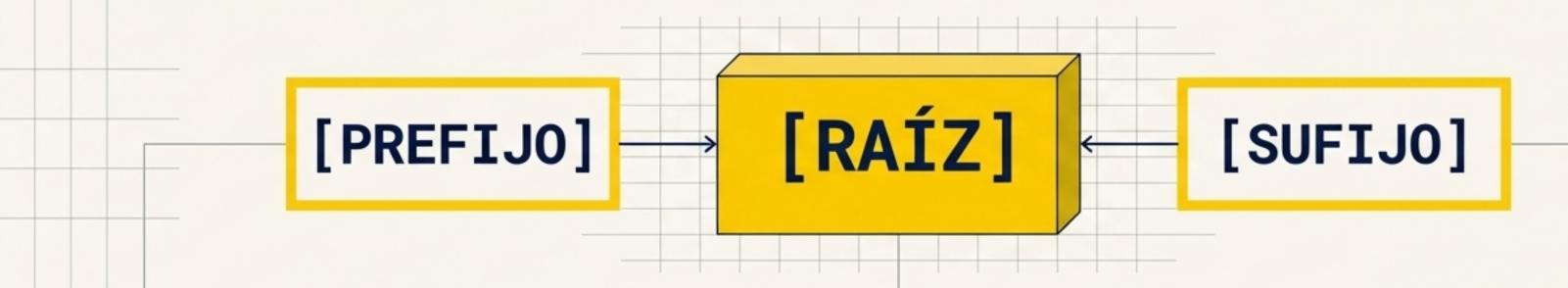
Ahora que sabes cómo analizar tu propia obra, es momento de aprender a leer los planos de los grandes maestros: el lenguaje técnico de la ciencia.

HERRAMIENTA 2: DECODIFICANDO LOS *TECNICISMOS*

¿Qué es un tecnicismo?

Son las palabras especializadas de un campo de estudio (ciencia, medicina, economía). Muchas de ellas son como rompecabezas formados por piezas del griego antiguo.

Entender su estructura es la clave para comprender el lenguaje de la ciencia. Son fundamentales en medicina, biología, psicología y filosofía, ya que la base de la ciencia occidental proviene de Grecia.


biology

biology — σχιτπου

άπαdous

πρνθου

La anatomía de una palabra técnica.

PREFIJO:

Se coloca **antes** de la raíz. Cambia o especifica el significado.

RAÍZ:

La **base** de la palabra. Contiene el significado principal y esencial.

SUFIJO:

Se coloca **después** de la raíz. Transforma o adapta la función de la palabra.

Glosario de Prefijos: Piezas que cambian el significado.

Anti- Contra

(Ej: antídoto)

Mono- Uno

(Ej: monopolio)

Hiper- Exceso

(Ej: hipertensión)

Poli - Muchos

(Ej: políglota)

Hipo - Debajo, insuficiente

(Ej: hipoglucemia)

A-, An- Sin

(Ej: ateo)

Tele- Lejos

(Ej: teléfono)

Glosario de Sufijos: Piezas que definen la función.

-logía Estudio, ciencia

(Ej: biología)

-fobia Miedo

(Ej: claustrofobia)

-cracia Poder, gobierno

(Ej: democracia)

-metría Medida

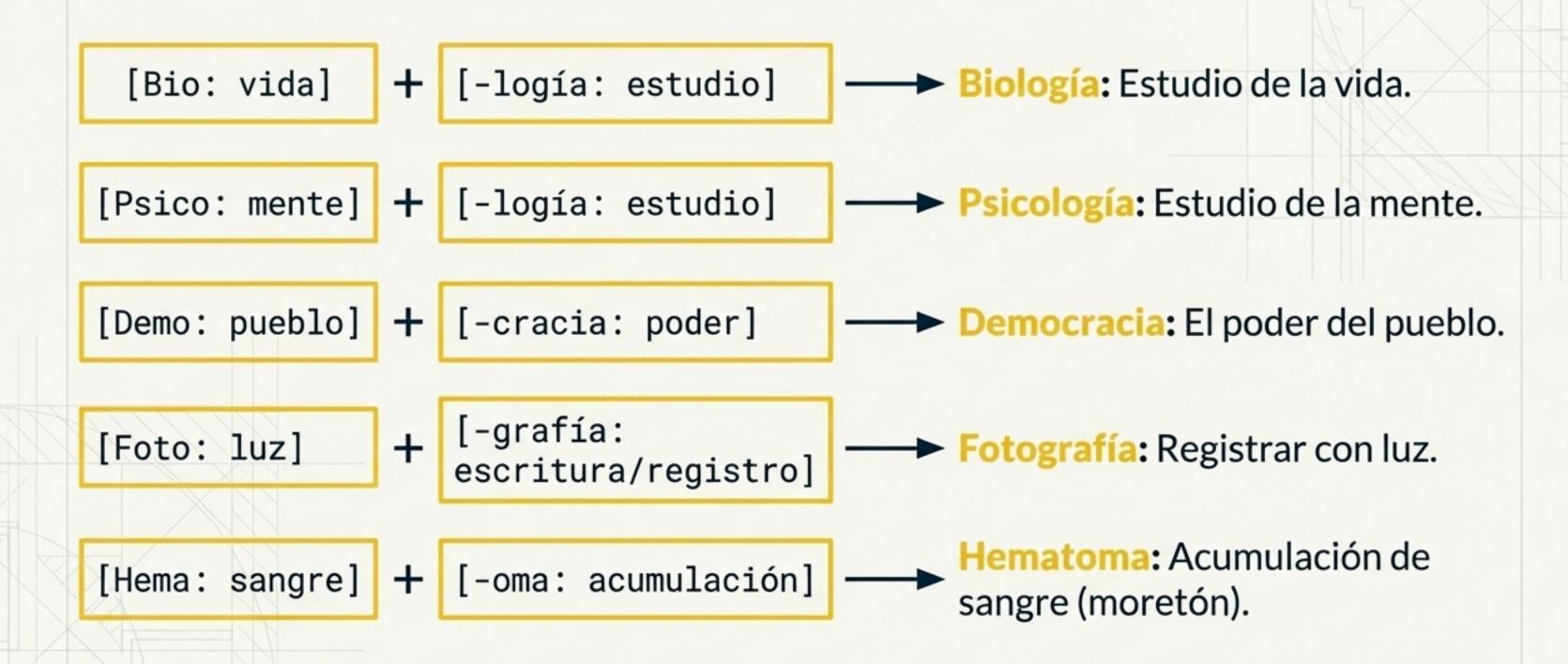
(Ej: geometría)

-patía Enfermedad, sentimiento

(Ej: neuropatía, empatía)

-tomía Corte, campo

(Ej: anatomía)


-itis Inflamación, infección

(Ej: faringitis)

Glosario de Raíces: El corazón del concepto.

Bio	Vida
Psico	Mente
Dermo/Derma	Piel
Cardio	Corazón
Neuro	Nervio
Fono	Sonido
Demo	Pueblo
Foto	Luz
Hema	Sangre

El arquitecto en acción: Construyendo significado.

Eres el Arquitecto del Conocimiento.

Con estas dos herramientas, tienes el poder no solo de construir y analizar tus propias ideas con rigor, sino también de **decodificar y comprender** el vasto legado del conocimiento humano.

ANALIZA. DECODIFICA. CONSTRUYE.